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Abstract 
 
This paper proposes the method, which allows to assess the fuzzy time and fuzzy probability of correct 
execution the discrete algorithmic process. The source modeling data are represented as fuzzy numbers, 
which depend on many influencing factors. Fuzzy logic inference, fuzzy extension principle together the 
crisp reliability models of algorithmic processes are used for modeling. 

 

1. Introduction 

Many discrete-behavior systems can be analyzed in a unified framework if combined into a class of so-

called algorithmic processes (AP). Typical AP include information processing in computer systems, 

performance of research or design projects, technological production processes etc.. Each of these 

processes involves a sequence of operations or jobs unfolding in time whose execution leads to the goal 

achievement. When designing a specific AP, we need to estimate of the following reliability measures:  

 APp  – the probability of correct AP execution; this may be interpreted as the reliability of output 

information, defect-free quality of the output products, reliability of system functioning;  

 APt  - the time or other resources required to execute the AP. 

Models to estimate APp and APt  are widely used in reliability theory of man-machine systems 

(Gubinskii, 1982, Rotshtein, 1987 and 1990). In these studies, the modeling is based on the theory of 

semi-Markov processes (Korolyuk and Turbin, 1976) whose states correspond to the operators and logical 

conditions of the given algorithm. Successful application of AP reliability theory (as well as of classical 

reliability theory (Kozlov and Ushakov, 1975) ) envisages construction of databases with reliability 

characteristics of the basic elementary operations. However, new operations do not have ex-post 

statistical estimates of outcomes under real-life conditions. Complex-system designers are therefore often 

forced to make decisions on the basis of following expert judgements: “if the human operator is tired, 

then the number of errors is approximately doubled” or “if the equipment is properly maintained and is 

operated under appropriate conditions, then the reliability is high”. 

The probabilistic reliability theory (Gubinskii, 1982, Rotshtein, 1987 and 1990) is incapable of utilizing 

input data expressed in the form of natural-language expert judgements. It is therefore relevant to try and 

develop a so-called “fuzzy reliability theory of algorithmic processes” (Rotshtein, 1994, Rotshtein and 

Shtovba, 1997 and 1998), which in addition to the probabilistic apparatus also uses the tools of fuzzy set 

theory (Zadeh, 1965, Zimmerman, 1996) that can manipulate linguistic expert information. 



In this article we propose an approach that extends the probabilistic AP’s reliability models to the case of 

fuzzy input data and allows for the dependence of data on influential factors through fuzzy  inference. In 

terms of fuzzy reliability (Cai, 1996), extended AP’s reliability models one can account as a branch of 

probist reliability theory with fuzzy probabilities. 

2. Language for description the algorithmic processes 

For formal description of AP we use the language of Glushkov’s algorithmic algebras (Glushkov, 

Tseitlin, and Yushchenko, 1978). In this language, the algorithm operators are denoted by Latin capital 

letters (A, B, C, …) and logical conditions are denoted Greek lower-case letters (α, β, γ, …). By the 

regularization theorem (Glushkov, Tseitlin, and Yushchenko, 1978), every algorithm is representable a 

superposition of the following operator structures:  

 21AAB  - linear structure consists of the process of consecutive operators 1A  and 2A  execution 

in the order of their registration; 

 )AA(C 21


 - -disjunction representing operator 1A  execution when condition  is true 

(=1), and execution of operator 2A  when condition  is false (=0); 

 


 }A{D  - -iteration representing cyclic execution of operator A till condition  has become true. 

3. Probabilistic models of algorithm reliability 

Let us assume that in execution of any operator A and logical condition   the following events are 

possible: )A(A 01  – correct (incorrect) execution of operator A; 1  ( 0 ) – condition   is a priori true 

(false); 11  ( 10 ) – an a priori true condition   is recognized as true (false) during a check; 00  

( 01 )  – an a priori false condition   is recognized as false (true) during a check. The above-listed 

events are assumed pairwise mutually exclusive.The probability ( obPr ) of these events is denoted by: 
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1111 obPrk  ; 1010 obPrk  ; 0000 obPrk  ; 0101 obPrk  . 

Note that 10k  and 01k  are the probabilities of type I and type II errors when checking condition  . The 

time for execution the operator A and check the logical condition   are denoted by At  and t . 

Error-free execution of operator structures is defined by following logical functions: 
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Given the logical functions of error-free execution of operator structures, we obtain the following rules 

for estimating the algorithm execution reliability: 
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4. Representation of uncertain source data by fuzzy sets 

Let q be an uncertain parameter that corresponds to the probability of error-free execution or the cost of 

executing the operator A or logical condition  . The uncertain parameter q is treated as a linguistic 

variable (Zimmerman, 1996) whose levels are formalized by fuzzy sets with convex membership 

functions defined on the universal set ]q,q[U , where q  and q  are the smallest and greatest allowed 

values of the parameter q. In this case, the uncertain parameter q is identified with the fuzzy number q~ . 

We represent the fuzzy number in following 3 forms: l-, l(X)-, and  - forms. 

Definition 1. The l-form of the uncertain parameter q is the triple: 

 l,q,qq~ , 

where l is the linguistic assessment of the parameter q in the range ]q,q[ , selected from the term-set 

}l,...,l,l{L m21  such that 

U
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j
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jl  is the membership function of the value 

]q,q[q  in the term Ll j , m,1j . 

Definition 2. The  -form of the uncertain parameter q is the union of the pairs  
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where )q(q   is the smallest (greatest) allowed value of q at the  -level of the membership function, 

i.e.:         0qq,qq   . 

Definition 3. The l(X)-form of the uncertain parameter q is the triple  

  xl,q,qq~  

where l(X) is the expert knowledge base in the form of systems of fuzzy logical propositions: 
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L(X)- form ties the level l of the parameter ]q,q[q  with the vector of influential factors 

)x...,,x,x(X n21 . The l(x)-form is transformed into l-form  by fuzzy inference (Zimmerman, 1996). 

Transition from l-form to  -form is carried out via the membership function of fuzzy number. 



5. Extending the reliability models to the fuzzy case 

Definition 4. Extension principle (Zimmerman, 1996). If the function )q,...,q,q(fy n21 of n 

independent variables is given and its arguments iq  are fuzzy numbers iq~  in α -form (4) ( n,1i  ), then 

the value of the function )q~,...,q~,q~(fy~ n21  is the fuzzy number y~  represented in α -form: 
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The extension principle easily produces fuzzy analogues of reliability models of algorithm execution 

(1) -(3). An example of application the fuzzy reliability models for assessment probabilistic-time 

characteristics of a ticket-booking information system is described in (Rotshtein and Shtovba, 1998). 

6. Conclusions 

The main obstacle to the application of probabilistic reliability models is the absence of input data that 

reflect real-life conditions describing the operation of the system. The method proposed in this paper for 

estimating the reliability of algorithms is one of the formal approaches to resolving the difficulty with 

source data by means of linguistic expert information and fuzzy extension principle. Contrary to semi-

Markov models used in reliability theory, the proposed technique is free from time-consumed procedures 

for convolution of the distribution functions of the system sojourn time in a given state. 
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