
Cybernetics and Systems Analysis, Vol. 38,No. 5, 2002

SOFTWARE–HARDWARE  SYSTEMS

INFLUENCE  OF  DEFUZZIFICATION  METHODS  ON
THE  RATE  OF  TUNING  A  FUZZY  MODEL

A.  P.  Rotshteina and  S.  D.  Shtovbab UDC  62-50

The results of computer experiments performed to determine the influence of defuzzification methods on
the rate of tuning fuzzy models are presented. The experiments were conducted for the defuzzification
methods of the center of gravity and center of maxima and for the median method. The defuzzification
method of the center of gravity was found to be the best method providing the highest tuning rate and
exactness.
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The operation of defuzzification of a fuzzy set, i.e., the transformation of the set into a precise number [1], is a
necessary element of identification of nonlinear dependences by means of tuning (training) fuzzy knowledge bases [2–4].
The simplest method of executing this operation is the choice of the precise number corresponding to the maximum of the
corresponding membership function [5]. However, the suitability of this method is restricted only to membership functions
with one extremum. In the literature on the theory of fuzzy sets, it is proposed to execute the operation of defuzzification of
multiextremal membership functions by the methods of the center of gravity and center of maxima and by the median
method  [1,  6,  7].

Since the criterion of quality of tuning a fuzzy model depends on the defuzzification operation [3], the choice of a
method that executes this operation and provides the best rate and accuracy indices of the tuning procedure being used is of
interest. This article is an outgrowth of [3] and presents the results of computer experiments in which the investigation of
defuzzification  methods  was  interrelated  with  the  quality  indices  of  tuning  fuzzy  models.

1.  A  PROBLEM  OF  TUNING  A  FUZZY  MODEL

Let  us  consider  an  object  of  the  form
y f x x xn= ( , , . . . , )1 2 (1)

that has n inputs (x i ni , ,=1 ) and one output (y) and for which quantitative intervals of changing its inputs

[ , ] ( , )x x i ni i =1 and output[ , ]y y are known. We assume that the interrelation "inputs-output" can be represented as the

following  fuzzy  knowledge  base:

IF [( ) ( ) . . . ( )]x a x a x aj j
n n

j
1 1

1
2 2

1 1= = =AND AND AND (with  a  weightα j1)

OR [( ) ( ) . . . ( )]x a x a x aj j
n n

j
1 1

2
2 2

2 2= = =AND AND AND (with  a  weightα j2)

... OR [( ) ( ) . . . ( )]x a x a x a
jk jk

n n
jkj j j

1 1 2 2= = =AND AND AND (with  a  weightα jk j
)

THEN y d j= for  all j m=1, , (2)
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whereai
jp is a linguistic term used for estimation of a variablexi in the line whose number isjp (p kj=1, ), k j is the

number of conjunction lines in which the outputy is estimated by a fuzzy termd j ( j m=1, ), α jp is a number that

belong to the interval[ , ]0 1 and characterizes the subjective measure of confidence of an expert in the statement whose

number  is jp j m p kj( , , , )= =1 1 .

Here, system (2) is considered as a generalization of the knowledge base proposed in [3] for the case where the output
variable  is  estimated  by  fuzzy  terms.

Let µ jp
ix( ) be the function of membership of an inputxi in a fuzzy termai

jp , i n=1, , j m=1, , p kj=1, , i.e., we have

a x xi
jp

x

x
jp

i i

i

i

= ∫ µ ( ) / , µ
dj y( ) is the function of membership of the outputy in a fuzzy termd j , j m=1, , i.e., we have

d y yj
y

y
dj= ∫ µ ( ) / . Then, according to [3], the degree of membership of a concrete input vectorX x x xn

* * * *, , . . . ,={ }1 2 in

fuzzy  termsd j is  specified  by  the  following  system  of  fuzzy  logic  equations:

µ α µ
d

p k
jp

i n

jp
i

j

j

X x j( ) max min [ ( )] , ,*

, ,

*= ⋅








=
= =1 1

1 m.
(3)

Following  [5],  we  define  the  fuzzy  set  corresponding  to  the  input  vectorX* as  follows:

~ min ( ( ), ( )) /
,

*y X y y
j m y

y
d dj j=

=
∫U

1

µ µ ,
(4)

whereU is  the  operation  of  union  of  fuzzy  sets.

We  define  the  precise  value  of  the  output  corresponding  to  the  input  vectorX* as  follows:

y y=defuz (~), (5)

where defuz is  the  operation  of  defuzzification  of  a  fuzzy  set.
To formalize the terms that belong to a fuzzy knowledge base of the form (2), we will use the functions of

membership  (which  are  introduced  in  [3])
µ T x

x b

c

( ) =

+
−








1

1
2 (6)

of a variablex in an arbitrary fuzzy termT, whereb andc are the following tuning parameters:b is the coordinate of

the maximum of the corresponding function,µ T b( ) =1, and c is the coefficient of concentration-expansion of the

function. Relations (3)-(6) specify a fuzzy model of object (1); the structure of the model corresponds to knowledge
base  (2).  We  write  this  model  in  the  form

y F X A B C= ( , , , ), (7)

where X x x xn= ( , , . . . , )1 2 is an input vector,A N= ( , , . . . , )α α α1 2 is the vector of weights of rules (lines) in fuzzy
knowledge base (2),B b b bq= ( , , . . . , )1 2 and C c c cq= ( , , . . . , )1 2 are the vectors of parameters of tuning membership
functions of the form (6) that are assigned to fuzzy terms and estimate the inputs and output of object (1),N is the
total number of rules (lines) in (2),q is the total number of terms in (2), andF is the operator that specifies the
relations  "inputs-output"  and  corresponds  to  the  use  of  relations  (3)–(5).

Let  a  training  sample  be  given  in  the  form  of  the  followingM pairs  of  experimental  data:

{ }X y h Mh h, , ,=1 , (8)

where X x x xh
h h

n
h= ( , , . . . , )1 2 is  the  input  vector  of  thehth  pair  andyh is  the  corresponding  output.
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To find the vector of unknown parameters( , , )A B C that minimize the divergence between the model (7) and
experimental (8) outputs of the object, we will use the least-squares method. Then the problem of tuning a fuzzy model is
formulated as follows: find a vector( , , )A B C that satisfies the restrictionsα α αr r r∈ [ , ], r N=1, , b b bν ν ν∈ [ , ], and

c c cν ν ν∈ [ , ], ν =1,q,  and  is  such  that  we  have

R
M

F X A B C y
h

M

h h= − →
=

∑1

1

2[ ( , , , ) ] min. (9)

It is pertinent to note that a basic difference between the proposed fuzzy model (3)–(5) and a similar model used in [3]
is an additional possibility of tuning membership functions of the output variabley in the former model. In this case, the
fuzzy model from [3] is obtained from formulas (3)–(5) by using the defuzzification by the method of the center of gravity
and  the  membership  functions  of  the  output  variable  in  the  form

µ
dj y

y y j y j
( )

[ ( ) , ] ,

,
=

∈ + − ⋅ +



1 1

0

for

otherwise

∆ ∆

where ∆ =
−y y

m
.

2.  METHODS  OF  DEFUZZIFICATION

The most widespread methods of execution of the defuzzification operation (5) are transformations of a membership
function  by  the  methods  of  the  center  of  gravity  and  center  of  maxima  and  by  the  median  method  [1,  6,  7].

The defuzzification of a fuzzy set~ ( ) /
[ , ]

~y y y
y y

y= ∫ µ by the method of the center of gravity is realized by the formula

y

y y dy

y dy

y

y

y

y

y

y

=

⋅∫

∫

µ

µ

~

~

( )

( )

.

(10)

A physical analog of formula (10) is the determination of the center of gravity of a flat figure bounded by the
coordinate  axes  and  the  plot  of  the  membership  function  of  the  corresponding  fuzzy  set.

The defuzzification of the fuzzy set~ ( ) /
[ , ]

~y y y
y y

y= ∫ µ by the median method consists of finding a numbery such that

we  have

y

y

y
y

y

yy dy y dy∫ ∫=µ µ~ ~( ) ( ) . (11)

A geometric interpretation of the median method is the determination of a point that belongs to the abscissa axis and is
such that the perpendicular restored at this point divides the area under the curve of the corresponding membership function
into  two  equal  parts.

The defuzzification of the fuzzy set~ ( ) /
[ , ]

~y y y
y y

y= ∫ µ by the method of the center of maxima is realized by the

formula
y

ydy

dy
G

G

=
∫

∫
,

(12)

whereG is the set of all the elements from the interval[ , ]y y that have the maximal degree of membership in the fuzzy
set ~y.
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By the method of the center of maxima, the arithmetic average of the elements of a universal set that have maximal
degrees of membership is found. If the set of such elements is finite, then formula (12) can be simplified as follows:

y

y

G

y G
j

j=
∈
∑

| |
,

where | |G is  the  cardinality  of  the  setG.
As is seen from this formula, if a membership function has only one maximum, then the coordinate of this maximum

is  a  precise  analog  of  the  corresponding  fuzzy  set.
As  an  example,  we  consider  the  defuzzification  of  the  following  fuzzy  set  by  different  methods:

~ . / . / . / / . /y y y y y y= + + + + +∫ ∫ ∫ ∫ ∫ ∫
0

2

2

3

3

5

5

7

7

8

8

9

0 2 0 4 0 8 1 0 4 0. / /6 1
9

10

y y+ ∫ . (13)

The  use  of  the  method  of  the  center  of  gravity  (formula  (10))  gives  the  precise  number

y

ydy ydy ydy ydy

=

⋅ + ⋅ + ⋅ + ⋅ +∫ ∫ ∫ ∫ ∫0 2 0 4 0 8 1 0 4
0

2

2

3

3

5

5

7

7

8

. . . . ⋅ + ⋅ + ⋅

+ +

∫ ∫

∫ ∫ ∫

ydy ydy ydy

dy dy d

0 6 1

0 2 0 4 0 8

8

9

9

10

0

2

2

3

3

5

.

. . . y dy dy dy dy+ + + +

=

∫ ∫ ∫ ∫
5

7

7

8

8

9

9

10

1 0 4 0 6 1
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. .

The use of the median method (11) gives the precise numbery = 58. since, for this number, the following equality is
true:

0

2

2

3

3

5

5

5 8

0 2 0 4 0 8 1∫ ∫ ∫ ∫+ + +. . .
.

dy dy dy dy= + + +∫ ∫ ∫ ∫
5 8

7

7

8

8

9

9

10

1 0 4 0 6 1
.

. .dy dy dy dy.
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Fig.  1.  Defuzzification  by  different  methods.
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The  use  of  the  method  of  the  center  of  maxima  (12)  gives  the  precise  number

y

ydy ydy

dy dy

=

+

+

=
∫ ∫

∫ ∫

5

7

9

10

5

7

9

10
717. .

The  defuzzification  of  fuzzy  set  (13)  by  various  methods  is  shown  in  Fig.  1.
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Fig.  2.  Training  curves  of  fuzzy  models  for  the  following  defuzzification
methods:  (a)  a  linear  reference  dependence,  (b)  a  unimodal  reference

dependence,  and  (c)  a  multiextremal  reference  dependence.
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3.  COMPUTER  EXPERIMENTS

For generation of fuzzy knowledge bases and training samples, the following three reference models of the form “two
inputs–one  output”  were  used:

linear
y x x= + −60 4 61 2, (14),
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Fig.  3.  Identification  of  dependence  (16):  (a)  a  reference  dependence,  (b)  a  fuzzy
model,  and  (c)  the  membership  function  after  tuning.

c

a

cb

x1 x2 y

L H L
L aA bA
aA H bA
bA bA A
aA aA A
bA L aA
H bA aA
H L H

TABLE 1. A Knowledge
Base  for  Dependence  (13)

x1 x2 y

L bA L
L aA L

bA aA L
bA bA L
H bA bA
H L A
L H aA

bA H aA
aA H aA
H H H

TABLE 2. A Knowledge
Base  for  Dependence  (14)

x1 x2 y

L H L
bA H L
bA bA L
H aA L
L bA L
H aA bA
H L bA
L L A
aA L A
aA bA A
aA aA A
aA H A
bA L aA
bA aA aA
H bA H
H H H

TABLE 3. A Knowledge
Base  for  Dependence  (15)



unimodal
y x x= − + −0 25 1 7 5 0 7 31

2
2

4. (( . ) ( . ) ), (15)

and  multiextremal

y x= + +31 3 1 40 0 5 1 2sin( . ) cos( )x x , (16)

in  which  the  variables  varied  within  the  following  intervals:x1 0 10∈ [ , ], x2 0 10∈ [ , ],  and y∈ [ , ]0 100.
In constructing the above fuzzy knowledge bases, the following denotations were used: L means “low,” bA means

“below  the  average,”  A  means  “average,”  aA  means  “above  the  average,”  and  H  means  “high.”
To dependences (14)–(16) correspond the fuzzy knowledge bases presented in Tables 1–3. These knowledge bases

were specified by experts on the basis of the plots of dependences (14)–(16). During the experiments conducted, the fuzzy
terms from the knowledge base (Table 1–3) were tuned for each method of defuzzification specified by formulas (10)–(12).
At the same time, training curves were constructed in the form of dependences of the accuracy of tuning (R) on the training
period (t). The experiments were carried out using the MatLab package on a personal computer with a processor
Pentium-166.  For  each  experiment,  the  training  sample  equaled  100  pairs  “inputs-output.”

As a result of the experiments carried out, we reveal that the defuzzification by the method of the center of gravity
(Fig. 2) provides the largest rate and accuracy indices of tuning the considered fuzzy models. As an example, the results of
identification  of  object  (16)  are  presented  in  Fig.  3.

The defuzzification of a fuzzy set, i.e., its transformation into a precise number, is a necessary element of construction
of applied fuzzy systems based on fuzzy logic. In this article, the results of computer experiments with reference
dependences are described, in which the rate of tuning (training) fuzzy models was investigated for the above-mentioned
defuzzification methods, namely, for the methods of the center of gravity and center of maxima and for the median method.
The computer experiments performed by the authors provide reason enough to assume that the best defuzzification method in
constructing  applied  fuzzy  systems  is  the  method  of  the  center  of  gravity.
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